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Abstract

Let {xnk: n21,k21} be an array of row-wise independent random elements

in a Banach space of type p, 1<p<2. The convergence of z:!lankxnk in

probability and almost surely is obtained under varying moment and dis-

tribution conditions on {xnk}. In particular, laws of large numbers are
obtained for triangular arrays of random elements. Finally, the direct

applications of these results in obtaining consistency of the kernel den-

sity estimates are indicated.
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1. Introduction and Preliminaries. The study of laws of large numbers /’

in Banach spaces has led to the geometric considerations of Banach spaces
such as Beck convexity (Beck (1963)), Ga (Woycznski (1973)), and type-p
(Hoffmann-Jgrgensen and Pisier (1976))-as well as many other authors. The
study of probability density estimation led to estimates in the form of
averages or weighted sums of random variables whose values are in function
spaces (Parzen (1962) and Rosenblatt (1971)). As a application of the law
of the iterated logarithm in linear measurable spaces, Kuelbs (1978) con-
sidered the rates of convergence in these density estimates. The estimates
are not always averages of sequences of random elements in a Banach space
but are more often weighted sums of arrays of random elements where the

weights are not necessarily Toeplitz matrices.

In this paper the convergence of weighted sums of arrays of random
elements in Banach spaces of type p is obtained both in probability and
almost surely. As corollaries these results have forms of Pruitt's (1963)
and Rohatgi's (1971) results for Banach spaces and also have extensions
for the results of Padgett and Taylor (1976). However, exact statements
of the theorems are related to the possible applications for density

estimation. applications are indicated in Sections 3 and 4.

Let E fldnote a real separable Banach space with norm || ||. Let

(0, AP) denote\a probability space. A random element X in E is a

function from Q Ynto E which is A-measurable with respect to the Borel subsets
of E. The expecthd value of X is defined to be the Pettis integral (when

it exists) and is oted by EX. The moments of a random element X are

E(llxllp) where E i4 the expected value of the (real-valued) random
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variable ||X|[P. The concepts of independence, identical distributionms,

and convergence have direct extensions to E.

Definition 1: A separable Banach space E is said to be of type p,

l<ps2, if and only if there exists C, ¢ R+ such that

1
E( | Tma X 1P s 6 I ECL I 1P

for every finite collection of independent random elements xl,...,xn in

E with mean 0 and finite pth moments.

Hoffmann-Jgrgensen and Pisier (1976) had several equivalent statements
for type p spaces including the strong law of large numbers. For the re-
sults of this paper, the following analogue of Marcinkiewicz-Zygmund

inequality by Woycznski (preprint) will be used.

Proposition 1: Let 1<p<2 and q21. Then E is of type p if and

only if there exists C2 € R+ such that

a/p
ECH Dy X D s cELQR X P 3

for all independent random elements xl.....xn with O means and finite qth

moments.

A collection of random elements {xu} in E is said to be stochastically

bounded by a random variable X, ||Ku| |€]X|, 1f for each a and for each t

P[||xu|l> tl< PL|X|>t]. 1.1)

If the random elements {xa} are identically distributed, then they are
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stochastically bounded by the random variable ”xa || for any gy

0
Also, by Lemma 5.22 of Taylor (1978) uniformly bounded rth moments (for
some r >0) is sufficient for stochastic boundedness by a random variable

X and for the existence of s(s <r) moments for the random variable X.

2. Almost Sure Convergence of Weighted Sums. In this section the

almost sure convergence for Toeplitz weighted sums of arrays of random
elements is obtained. Recall that {ank: n21,k21} is a Toeplitz array
if

(1) %E ay "= 0 for each k (2.1)

(i1) Z:-llankl <T for each n (2.2)

where it can be assumed that I'=l1). When the random elements {xnk} in E

are stochastically bounded by the random variable X and Elxl <o, then

)
Xk-lzl lankxnkl I < zz.llank|5|x| < E|xl

L]
and zk-lankxnk is convergent almost surely for each n. Theorem 1 will be
stated for complete convergence (which implies almost sure convergence)
since the proof will consist of showing zn-lpulzk-lankxnk“ 2el <= for

each ¢ > 0.

Theorem 1: Let {xnk} be an array of random elements in a Banach
space of type p, 1<p<2, whichare row-wise independent and such that
EX , = O for all k and n. If {xnk} are stochastically bounded by a random
variable X and 1if (ank} is a Toeplitz array such that

naxlankl «0(n ), y>0, then F:I)tll"']'/Y <= implies that
k




”2 nk k 0 completely.
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The proof of Theorem 1 is accomplished in three lemmas. The first

two lemmas follow directly from Pruitt (1966) and Rohatgi (1971) since

i | lankxnkl ltlankl | lxnk[ | and {Iankl }a{ | lxnkl |} are weights and random
' i variables satisfying the corresponding hypotheses.
i ¢
A 4
. Lemma 2: If E|x|1+lly<~ and maxlankISBndY. then for every ¢ > 0
4 3
A ; Zn.IP[l |a K nk” 2 ¢ for some k]l<w,
3 F 1+1/y
; Lemma 3: If E|X] <® and maxlankl <Bn ', then for a < y/2(y+1),
i k
' ‘ Z:_IP[] la ” 2n " for at least two values of kl<w,
i Lemma 4: If EX = O for all n and k, £|X| 1Y, and
: max|a_.| <Bn Y, then for every € > 0,
: x Pk ;
2"
zn.lel lr lankxnkI[I lankxnkl |< n—a]! l?. el<w
I where 0 < a < y.
i i Proof: When a , = 0, then |a kl is understood to be =. Since
; § Exnk = 0,
L

1“ : l|n(x '“J)”

k] g Xy | <n

| . e O NIE

- -1
SE(”xnk“I[”xnk” >n nlankl ])

:
:
i
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s | [x]dPL|X| < x1dx. (2.3)
| x| Zn-“B"J'nY

)|| >0 uniformly in k as n-+ w,
Thlls, Y>o yields IlE(xﬂkI[l lank ll y 13

xnkl I <n ]
Hence,

, ’;k‘lankE(xnkI[! Iankxnk( ] = n-(!])’ ,
00 ' E 1 :
sfk.l.ankl (”xnk” [”ankxnk” <n'°]) + 0 (2.4)
as n+», Define,
an = xnkI[I Iankxnkl ] < n"\’]-E(xnkI” Iankxnkl l 5 n-G]), (2.5)

1+1/
Note that EZ = 0, E|[[Z_ || stlsllxnku

some d >0, and ”ankznk” <2n"". From (2.4)

My, KlElxllﬂ'/Y- d for

[”z‘ID a. X I -a||>e]
k=1"nk nk [”ankxnk” <n ]
© [T mp il [ 2 32 (2.6)
for sufficiently large n. For each n, pick s{(n) so that
© -2
Lyms(ny41 |2l 327
Let v be chosen so that

8= %’- is an integer and v > [(1-%)(27)]—1. (2.7)

2
Since llnnkznkll s2n ", E(IIX:f‘l‘)ankznkH V) is finite. Using Proposition 1

2v
el W T PTE X el ITWOR L0 5

ECl | Lm1 ®niZak
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-C BL A |la. 2. |17, (2.8
zkl,.g..ks j=1 "k ok

In the general term of (2.8),:1let
t = ' =
9, of the k's Cl’ T of the k's n

' = ' =
rloftheks bl, .rtof the k's bt

where p5pqisl +%, prj>1 +%, and

yi‘lqi + zj"l 3 s = —,

Thus, in (2.8)

Pq t
B Rl z, [[P1=cT||a I tn(la gl
jm1 nj j P 1 nc, nci l j ” nbj nbj”
o 9y
S AP NI 141§ e a, 2 "y
{=1 D¢y nc, i=1 nl:o:I nbj”
Pq, -1
< (1+x15|x|1+1/”)“"t( T
{=] nci nci 3
t pr.-1- ¢
il ey
.1'1 3 m 134 ¢
m oy g =L =
s+ (T | D (n . Do
i=1 ;
-]- =
x(2n )23 o R (2.9)
For the last expression in (2.9), the power of n'1 is
vig, (Pa-1) + € + Z;_l(prj-l-%). (2.10)

If t21, then

yZ?_l(pqi-l) +t+ az;_l(prj-l-%)
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21+ aZ;-l(prj—l—lly) 21 + aé (2.11)
-l 0
for some fixed 6 > O since tj is an integer greater than ;-+ - Ift =0,

then
m t 1,
Y)tigl(Pqi'l) * £+ azj.l(prj-l- Y)
m
= 3oy e~V
2v
= vy(2v - p)
w0 Ly>1
3 P

by (2.7). By (2.7) and (2.11) r = min(y(Zv)(l-%),1+a6}> 1. From (2.8)

and (2.9)

=T

1
£([720* e 2 117 skpn

where the constant Kz depends only on d,y,p, and B.

Next,

-] an t
et PU 22 | 253

Sz:-lptllz3(n)+1 %k nkllz-ﬂ

a0 ..} e
+ Lom1PU img (ny+12niZak ! | 252

s @ in_lztllz“‘“)ﬂ a2zl
4 ow ™
it E.Xu-lzk'S(ﬂ)'HEllankznk”

4 2v

=r  b4o® o
$ Q@ Loe1®o®  * tlpet) ks (yer! Snkl )
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2v
= (%) KZchln,r + §(1+d)2:_1n-2
< ®, (2.12)
Finally, (2.6) and (2.12) yield
z:=1P[' Iz;-lankxnk” 2 g] <, /11

The proof of Theorem 1 follows directly from Lemmas 2,3, and 4 since

{--] -
U 1ol 2 €3

© €
e([| IZk-lankxnkI[l Iankxnkl | < n-a:lI I 233
€

vl{la X . ||25 for some k]

U[l lankxnk' 22™ for at least two k's])

A version of Rohatgi's (1968) result for type p, 1 <p <2, spaces is
obtained directly from Theorem 1 as a corollary. It is interesting to
observe that the moment condition is related to the weights rather than

the type p condition. Typically, y<1, and hence 1 + 1/y222p.

Corollary 1: Let {Xn} be a sequence of independent random elements
in a Banach space of type p, 1 <p<2, such that Exn- 0 for each n, and
let {Xn} be stochastically bounded by a random variable X. If {ank) is
a Toeplitz array such that m;xlankl-o(n.v), y > 0, then 1.-:[x|1"']‘/Y <o

implies that

l IZ;..lankku | +0 completely.




The geometric property of E significantly relaxes the condition im-

posed in Padgett and Taylor (1976), Theorem 2, to extend Rohatgi's results
to Banach spaces. The type p condition is not needed in the corresponding
results for independent, identically distributed random elements since

the uniform truncation is accomplished by the identical distributions.

3. Convergence in Probability and Density Estimates. Convergence

in probability of the weighted sums will be obtained in this section
under relaxed conditions on the summability of the weights. The general

application of these results to density estimates will be indicated.

Theorem 2: Let {Xnk} be an array of row-wise independent random
elements in a Banach space E of type p, 1 <p<2. Let Exnk-O for each n
and k and let {Xnk) be stochastically bounded by a random variable X.

Let {a , } be an array of constants such that max|a_, |*0 as n+« and
nk nk
1<k<n

X:.llanklésr for all n
where 1sr<p. If E(JX|T)<®, then
|1 D pmg@Xop | |+ 0 in probability

The proof consists of incorporating thé techniques of Theorem 1 into
the proof of Theorem 5.3.2 of Taylor (1978), and will be omitted.

In the general density estimation problem xl....,xn are independent
random variables with the same density function f. The kernel estimate

for £ is given by

B ot

t-
ﬁ L RCF) = £,(0) (3.1
n
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where K is an arbitrarily chosen density and hn-v 0 as n+«, There are
numerous choices for K and hn' Here, we will assume that K(t) is a
bounded (integrable) kernmel with compact support. Let w(t) be a bounded

weight function such that

J1£(t) |Pu(r)at <= (3.2)
log h
£ el <1im iof [1+4 B). Typieally, h- 0>
or som 5 ks ok o YP Y h~n .

Hence, p>1—i§ where 0< 6 <. Denote
E = {g: g:R*R and f‘lg(t)Ipw(t)dt<°}. (3.3)

Then, E is a separable Banach space of type min{2,p} with norm

p 1/p
[lgll=¢f|g(t)|Fw(t)at) . (3.4)
t-xl t-X
Since K is bounded with compact support, {K(T)"“'K( n Dy} are
n n

i.i.d. random elements in E for each n. For q21

t=-X q t-X
EC [R(D || =L (7 IR

n e n

P
L) w(e)ar) /P

b
/
- e0(f |R(8) |Pw(x +sh )h_ds)3'P)
q/p
< (bdd K)I[(bdd w) (b-a)h ]
< =, (3.5)
t-xl
From (3.5) the expected value E[K(T)J ¢ E, and the random elements
t-. t-. n
{K(T-)-E[K(—r)]: k=1,2,...,n and n21} are stochastically bounded
n n
by a random variable X. Let 8" ;;h: for 1<sk<n and ax" 0 for k>n.

Choose r so that 1<r <p and

ek
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y lankl wmf=-1"=n" "h "sT (3.6)
k=1 n
for all n. Under the conditions of (3.1) to (3.6), Theorem 2 yields
t-. t-
1l en xk x1
Nt Lo B - BRETN]+0 (3.7)
n n n
} in probability. The troublesome aspect is showing that
| ey
“E]'—E(K(—h"l))-f(t)l [+ o. (3.8)
n n
Lemma 5: Let f be piecewise continuous, bounded on each compact sub-
set, and 1lim £(s)=0. Then
s|+e
e g
| E®REGN-£(0)]] »0.
n n
Proof: First,
t-X
1 1
| E®REN-£@) | |P
n n
. = [7 I RES £(s)ds-£ (1) | Pule)a
‘ ~ ‘'npe> n
; b
5 = [ £ K(y)[£(t-yh )-£(£)1dy| Pu(e)de. (3.9)
]

The integral with respect to t in (3.9) may need to be broken into several

(improper) integrals, so that (w.l.o.g.), it can be assumed that f is con-

tinuous at each t. Thus, for each y and each t, f(t-yhn)tf(t) as n+ =,

Choose N, so that |yhn| s1 for all n2N,. Hence,

If(t-yhn)-f(t)l < |f(t)] + sup |£(t-8)| sT(t)
-1<s<1

for each t. Hence,
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b
J R()LE(e=yh ) = £(t)1dy + 0 (3.10)
a

pointwise in t. Choose a and B so that

a+l
[ £(t)dt se/bdd w,

[ £(t)dt se/bdd w, and
g-1
£(t) < 3 for td [a+1,8-1]. (3.11)
Then for nZNl
© b
§) ! K(y)[f(t-yhn)-f(t)deIPW(t)d:
a b
s [ | JRG)LE(t-yh )-£(t) Jdy|w(t)de
® a
B b
+ | f RGIE(e-yh )-£(2) Jay|Pu(t)ae
a a
© b
+ [ | JRGLECE=yh )=£(t) ]| w(t)de. (3.12)
B a
The first term of (3.12) becomes
a b
| JRG)TECe-yh )-£(2) Jdy|w(t)de
- a
a b a b
< bdd w( [ [ R(y)£(t-yh Ydydt + [ [ K(y)£(t)dyde)
- g - 8

<ete (3.13)

by (3.11) and an interchange of integrals. Similarly, the third term of
(3.12) is less than 2¢. The second term of (3.12) converges to zero by

the dominated convergence theorem. Hence, there exists N such that
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g
|15 BRE=)-£(e) | |P < 5
n n

for all n2N. 11/
Theorem 2 and Lemma 5 provides the consistency
|1£, (e)-£(0) || 'Llfn(t)-f(t)lpw(t)dt +0

in probability where the pth integrated difference with respect to an
arbitrary weight function w(t) is related to the order of h . Before
proceeding to the complete convergence of the estimates, it is important
to note that w(t) =1 is often assumed and that various combinations of

conditions on K and f will yield Lemma 5.

4. A Strong Law of Large Numbers Application. In this section a

strong law of large numbers is obtained for arrays of random elements
in type p spaces. This result substantially improves the density
estimation application in the previous section. The proof of Theorem 3

will make use of the following lemma (Corollary 2.1 of Woycznski (pre-

print)).

Lemma 6: Let E be of type p, 1<ps2, and let q21. 1If {xn} are

independent, identically distributed random elements in E with

EC||%|]%) <= and EX, = 0, then
EC) |y X | [P = 0 3EC| 1%, 17D 4.1)

for some constant cz independent of n.

Only the major points of the proof of Theorem 3 will be indicated.

Again, the proof will use higher moment conditions on the random elements
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than the type of the space.

Theorem 3: Let {Xnk} be an array of row-wise independent, identically

distributed random elements in a Banach space of type p, 1<p <2, and let

nxnk-o for each n and each k. If for some q21

L E LIV T

then

1
| liz:-lxnkl | + 0 completely.

Proof: For each € >0 and each n

1 ~pa_ -
PO T s Xl > e1sn Pl PIg(| [T X 1P
s 0 PePeade([x [P

by Lemma 6. Thus,
len
yn‘l [” zk‘l 'k ,>£]
e 9
czzn-l

by (4.2). ;

In the density estimation problem, let

4 1 =X, ,
X, K& = =K(—=—) - EK(=)).
nk hn hn hn hn

E(| lxnll IPq)/nQ(P-l) §

(4.2)

(4.3)

/11

Css .
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Lemma 5 provides for the convergence.

t- )L
II—E(K(——)) £(t)||+o.
n

In verifying the moment condition (4.2), Inequality (3.5) will be used.

For any q21

E(]|x, II"“)sEE(II—x(—Hl + ||h—z(x( 1)l|>P“J
n n
X X
1y |P9yPa & llz(x( 1))113""
n 1 1 n
-pq q,pq P\+P4
s hn [(clohn ) + (CShn )]

-pPq
<h [E(] Ix(

P9, 9. q(1-p)
s h "UCeh Cbhn (4.4)

where c,‘, Cs, and C, are constants depending on the bounds of K and w and

6
the support of K, [a,b], and the values of p and q. Hence,

£(| |2, | 1PH/m?PD) < c.n 93P 000<1)
= Cglun)"IPD), 4.5)

Thus, 1if hu is of the order n.6 for any 0< 6§ <1 there exists a q 21 such

that the terms in (4.5) sum. By Theorem 3 and Lemma 5
]If (t)-f(t)] w(t)dt + 0 completely

for any p, 1<ps 2, unrelated to the hn's when

X'n-l. (nhn) e
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for some a > 0. Not only is complete convergence obtained, but the hn's

are much more general. This improvement is mainly due to the probability

cancellation in type p spaces, and the pth integrated norm (in (4.4)).
Inequality (4.3) suggests an immediate weak law of large numbers for

arrays of random elements in type p spaces.

Theorem 4: Let {xnk} be an array of row-wise independent, identically
distributed random elements in a Banach space of type p, 1<p<2, and let

zxnk-o for each n and each k. If for some q21

a9 Dg(|x [P » o, | “.6)
then

| I%Z:_lxnkl | + 0 in probability.

The condition of row-wise indentically distributed random elements in
Theorems 3 and 4 is not necessary since Proposition 1 could be used instead
of Lemma 6. However, exprusiohs (4.2) and (4.6) would appear much more

complicated.

5. Acknowledgements. Sincere thanks go to Wojbor Woycznski for

discussions on the Marcinkiewicz-2ygmund ;1nequa1:lty in type p spaces and

for suggesting the framework for those results.
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